Molecular dynamics simulations of protein folding from the transition state.
نویسندگان
چکیده
Putative transition-state ensemble (TSE) conformations of src SH3 were identified by monitoring the deviation from the experimental phi values along molecular dynamics (MD) simulations of unfolding. Sixty MD trajectories (for a total of about 7 micros) were then started from the putative TSE. About one-half of the 60 runs reached the folded state while unfolding was observed in the remaining half of the runs. This result validates phi-value analysis as an approach to obtain structural information on the transition state. It also demonstrates that an atomic resolution description of the TSE can be extracted from MD simulations. All conformations in the TSE have the central three-stranded beta-sheet formed in agreement with experimental data. An elongation of strand beta 2 as well as non-native side-chain interactions between the diverging turn and the distal hairpin are observed. The simulation results indicate that the tight packing of the side chains between the diverging turn and the distal hairpin is a necessary condition for rapid folding. Contacts between residues in the most structured element of the TSE, the central beta-sheet, are kinetically more important than those between the N- and C-terminal strands.
منابع مشابه
Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملEnergy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملEffects of Dimethyl Sulfoxide and Mutations on the Folding of Abeta(25-35) Peptide: Molecular Dynamics Simulations
The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product of its larger parent molecule that retains the amyloid characteristics and toxicity of the full length parent molecule. Aggregation of this peptide occurs rapidly in aqueous solutions and thus characterization of its folding process is very difficult. In the present study, early stages of Aβ(25–35) ...
متن کاملRatcheted molecular-dynamics simulations identify efficiently the transition state of protein folding.
The atomistic characterization of the transition state (TS) is a fundamental step to improve the understanding of the folding mechanism and the function of proteins. From a computational point of view, the identification of the conformations that build out the transition state is particularly cumbersome, mainly because of the large computational cost of generating a statistically sound set of f...
متن کاملReconstruction of the src-SH3 protein domain transition state ensemble using multiscale molecular dynamics simulations.
We use an integrated computational approach to reconstruct accurately the transition state ensemble (TSE) for folding of the src-SH3 protein domain. We first identify putative TSE conformations from free energy surfaces generated by importance sampling molecular dynamics for a fully atomic, solvated model of the src-SH3 protein domain. These putative TSE conformations are then subjected to a fo...
متن کاملDescribing Protein Folding Kinetics by Molecular Dynamics Simulations. 1. Theory†
A rigorous formalism for the extraction of state-to-state transition functions from a Boltzmann-weighted ensemble of microcanonical molecular dynamics simulations has been developed as a way to study the kinetics of protein folding in the context of a Markov chain. Analysis of these transition functions for signatures of Markovian behavior is described. The method has been applied to an example...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 10 شماره
صفحات -
تاریخ انتشار 2002